

AS RELEASE

ACN 001 717 540 ASX code: RMS

. . . .

24 October 2019

Further High Grade gold results at Symes' Find

HIGHLIGHTS

- Excellent infill & step-out shallow oxide RC drill results have recently been returned from Symes' Find (Mt Hampton Project within the Edna May region, refer Figure 1), including:
 - o 11m at 4.38 g/t Au from 2m, including 1m at 18.6 g/t Au
 - o 9m at 12.72 g/t Au from 12m, including 1m at 99.0 g/t Au
 - o 6m at 10.67 g/t Au from 29m, including 3m at 19.58 g/t Au
 - o 6m at 9.32 g/t Au from 40m, including 2m at 23.8 g/t Au
 - o 12m at 2.40 g/t Au from 11m, including 1m at 10.4 g/t Au
- Significant deeper infill RC drill results confirm continuity of mineralization down dip within the fresh rock at Symes' Find, including:
 - o 9m at 3.07 g/t Au from 79m, including 1m at 8.19 g/t Au
 - o 12m at 3.38 g/t Au from 49m, including 1m at 9.45 g/t Au
- Further highly encouraging step-out surface laterite drill results also returned from Symes' Find, including:
 - o 12m at 2.70 g/t Au from surface
 - o 6m at 4.06 g/t Au from 1m
 - o 5m at 2.61 g/t Au from surface

Ramelius Resources Limited (**ASX:RMS**) ("Ramelius", "the Company") is pleased to announce that significant surface laterite gold mineralisation plus shallow oxide and bedrock gold mineralisation has been returned from step-out drilling beyond the previously reported 34,000oz Indicated and Inferred Mineral Resource at Symes' Find (see RMS ASX Release,

'Resource and Reserve Statement 2019', 10/09/2019).

Symes' Find is located 120km southeast from Edna May in Western Australia, via sealed roads (refer Figures 1 & 6). Drill access has been limited due to the winter grain cropping season, but where access was permissible the mineralisation shows good strike continuity to the south, into the larger Mt Hampton Project.

Further strike extension step-out drilling is scheduled to commence once the winter grain crops have been harvested around mid-December this year.

Ramelius Managing Director, Mark Zeptner today said:

"The latest Symes' Find drilling results are further testament to the potential of the Edna May region to deliver future resources and reserves for the Company and highlight the significance of Ramelius' decision to consolidate a dominant land package extending over 130km strike through prospective stratigraphy around the Edna May gold mine.

We will continue to systematically explore the highly prospective Westonia/Holleton and Tampia greenstone belts to consolidate Edna May as a significant long-term production centre for the Company."

24 October 2019

ISSUED CAPITAL

Ordinary Shares: 658M

DIRECTORS

Non-Executive Chairman: Kevin Lines Managing Director: Mark Zeptner Non-Executive Directors: Michael Bohm David Southam Natalia Streltsova

COMPANY SECRETARY:
Richard Jones

www.rameliusresources.com.au ramelius@rameliusresources.com.au

RAMELIUS RESOURCES LIMITED

Registered Office

Level 1, 130 Royal Street East Perth WA 6004 Tel +61 8 9202 1127 PO Box 6070 East Perth, WA 6892

Symes' Find Drilling

Significant assay results are now available from step out exploration drilling completed immediately south and east of the Symes' Find Resource. Symes' Find is situated within the larger 100% owned Mt Hampton Project and is located 120km south-southeast of Edna May, within the wheatbelt region of Western Australia. Where access has been permissible a total of 70 holes have been completed (SYFC217-286) for an aggregate of 3,164m.

Symes' Find consists of a gently folded, shallow (20-30°) east dipping mafic gneiss sequence cut by east-west trending subvertical (axial planar) shears. Shallow east plunging mineralised shoots manifest along the intersection of the shears and the east dipping gneissic fabric (refer Figure 3). Better shallow, supergene enriched intersections not previously reported include:

- > 11m at 4.38 g/t Au from 2m in SYFC265, including 1m at 18.6 g/t Au
- > 9m at 12.72 g/t Au from 12m in SYFC266, including 1m at 99.0 g/t Au
- > 6m at 10.67 g/t Au from 29m in SYFC273, including 3m at 19.58 g/t Au
- ➤ 6m at 9.32 g/t Au from 40m in SYFC274, including 2m at 23.8 g/t Au
- > 12m at 1.71 g/t Au from 33m in SYFC280
- > 3m at 5.21 g/t Au from 34m in SYFC281, including 1m at 14.3 g/t Au
- > 3m at 7.93 g/t Au from 5m in SYFC285
- > 12m at 2.40 g/t Au from 11m in SYFC285, including 1m at 10.4 g/t Au

New deeper fresh rock intersections have now extended the depth of the known mineralisation within the main lode to 75m below surface and include:

- > 9m at 3.07 g/t Au from 79m in SYFC222, including 1m at 8.19 g/t Au
- > 12m at 3.38 g/t Au from 49m in SYFC224, including 1m at 9.45 g/t Au and
- > 2m at 13.77 g/t Au from 56m in SYFC224

Mineralisation remains open down plunge and along strike to the south. Within the deposit the gently folded lozenges of high-grade mineralisation are predicted to reflect southeast plunging ore shoots within the overall strike continuous package of shallow dipping mafic gneiss, as depicted in Figures 2 to 5.

Gold intersection true widths are interpreted to be around 80% of the reported downhole intersections for the shallow plunging gneissic fabric mineralisation.

The drilling has further defined the broad southeast trending 5-10m thick channel of mineralised transported laterite (at plus 0.5 g/t Au) which remains open to the southeast.

Better intersections include:

- > 12m at 2.70 g/t Au from surface in SYFC234
- > 11m at 1.50 g/t Au from surface in SYFC235
- > 10m at 1.34 g/t Au from 1m in SYFC236
- > 6m at 4.06 g/t Au from 1m in SYFC264
- > 5m at 2.44 g/t Au from surface in SYFC266
- > 5m at 2.61 g/t Au from surface in SYFC267
- ➤ 6m at 3.27 g/t Au from surface in SYFC272 and
- > 7m at 2.57 g/t Au from surface in SYFC286.

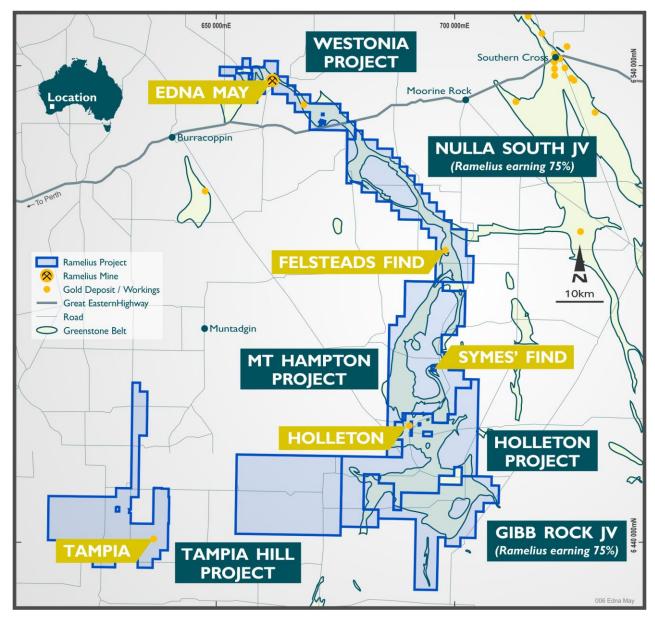


Figure 1: Location of the Symes' Find Resource and Mt Hampton Project relative to the Edna May gold mine & other regional exploration properties

For further information contact:

Investor enquiries:

Mark Zeptner

Managing Director Ramelius Resources Ltd Ph: +61 8 9202 1127

Tim Manners

Chief Financial Officer Ramelius Resources Ltd Ph: +61 8 9202 1127

Media enquiries:

Luke Forrestal

Associate Director Media & Capital Partners Ph: +61 411 479 144

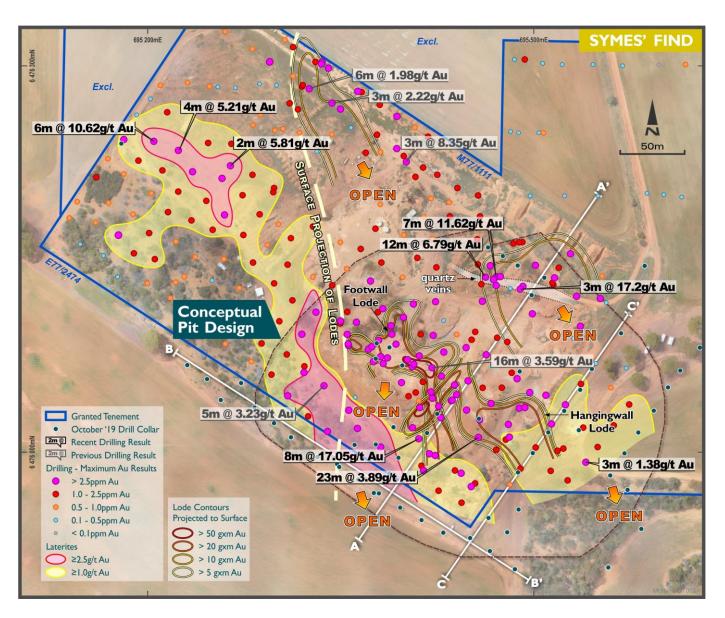


Figure 2: Drill hole location plan over Symes' Find and location of the cross sections shown in Figures 3-5

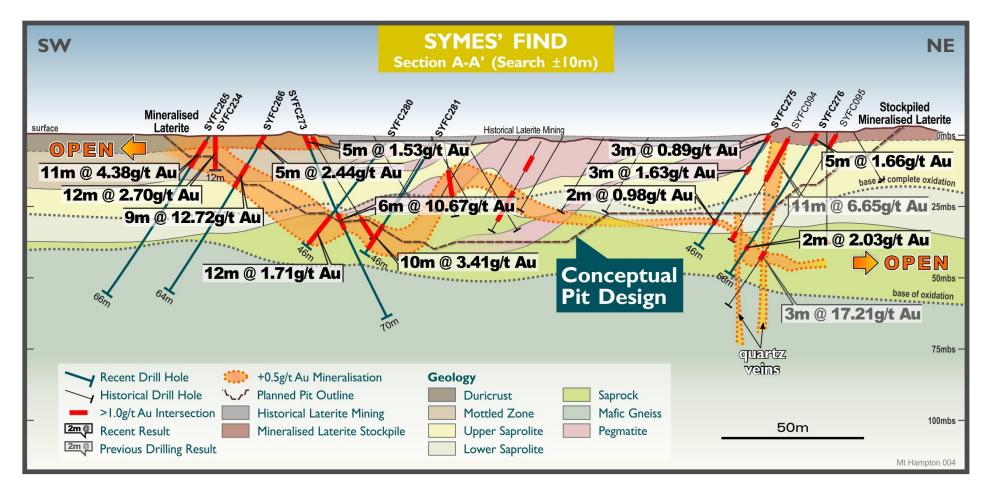


Figure 3: RC drilling cross section (A-A') through Symes' Find. Previous explorers targeted vertical dip extensions (eg: deep diamond hole) rather that shallow plunging shoots, projecting out of the page on this section. Drilling is deliberately parallel to strike to maximise the potential for intersecting high grade shoots as well as the east-west striking subvertical quartz veins. An updated pit design will now be created

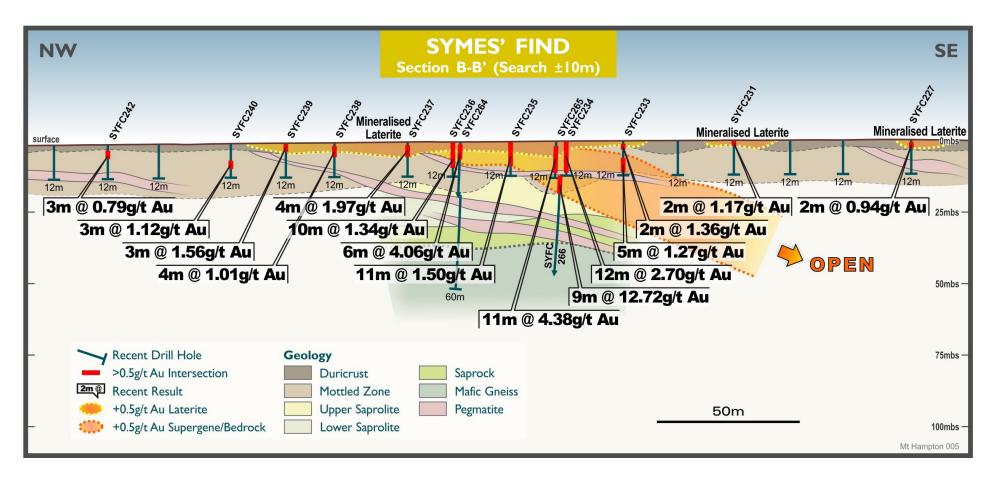
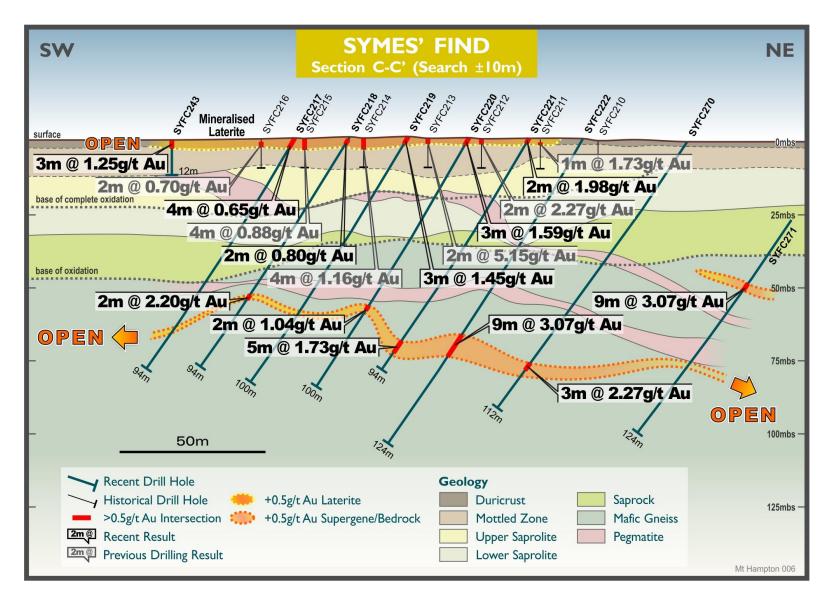



Figure 4: RC drilling cross section (B-B') through Symes' Find. Section highlights the shallow east dip to the mineralisation below a blanket of mineralised laterite

Figure 5: RC drilling cross section (C-C') through Symes' Find. Section shows the continuity of the deeper bedrock mineralisation, down-dip from the shallow supergene gold mineralisation depicted in section A-A'. Drilling orthogonal to the predicted plunging shoots has allowed for better definition of the high-grade shoots within the resource

ABOUT RAMELIUS

Ramelius owns and operates the Mt Magnet, Edna May and Vivien gold mines, all in Western Australia (refer Figure 6). Ore from the high-grade Vivien underground mine, located near Leinster, is trucked to the Mt Magnet processing plant where it is blended with ore from both underground and open pit sources.

The Edna May operation is currently processing high grade underground ore and low grade stockpiles. Additional ore feed is planned from the adjacent Greenfinch open pit and satellite Marda and Tampia open pit projects.

Figure 6: Ramelius' Operations & Development Project Locations

FORWARD LOOKING STATEMENTS

This report contains forward looking statements. The forward looking statements are based on current expectations, estimates, assumptions, forecasts and projections and the industry in which it operates as well as other factors that management believes to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. The forward looking statements relate to future matters and are subject to various inherent risks and uncertainties. Many known and unknown factors could cause actual events or results to differ materially from the estimated or anticipated events or results expressed or implied by any forward looking statements. Such factors include, among others, changes in market conditions, future prices of gold and exchange rate movements, the actual results of production, development and/or exploration activities, variations in grade or recovery rates, plant and/or equipment failure and the possibility of cost overruns. Neither Ramelius, its related bodies corporate nor any of their directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy, correctness, completeness, adequacy, reliability or likelihood of fulfilment of any forward looking statement, or any events or results expressed or implied in any forward looking statement, except to the extent required by law.

COMPETENT PERSON

The information in this report that relates to Exploration Results is based on information compiled by Kevin Seymour who is a Competent Person and Member of The Australasian Institute of Mining and Metallurgy. Kevin Seymour is a full-time employee of the Company. Kevin Seymour has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Kevin Seymour consents to the inclusion in this report of the matters based on their information in the form and context in which it appears.

Attachment 1: Significant (>0.50 g/t Au) RC drilling Symes' Find (Mt Hampton Project), Westonia, WA

Hole Id	Easting	Northing	Az/Dip	RL	F/Depth (m)	From (m)	To (m)	Interval (m)	g/t Au
SYFC217	695488	6475984	219/-60	403.7	94	0	4	4	0.65
SYFC218	695500	6476000	219/-60	404.1	94	1	3	2	0.80
SYFC218						64	66	2	2.20
SYFC219	695513	6476016	215/-60	404.2	100	0	3	3	1.45
SYFC219						98	99	1	1.22
SYFC220	695525	6476030	216/-61	403.8	100	0	3	3	1.59
SYFC220						67	69	2	1.04
SYFC220						90	91	1	1.77
SYFC221	695538	6476049	217/-61	403.6	94	0	2	2	1.98
SYFC221						82	87	5	1.73
SYFC222	695546	6476065	216/-61	403.5	124	73	74	1	4.28
SYFC222						79	88	9	3.07
SYFC222					Incl.	85	86	1	8.19
SYFC223	695535	6476017	212/-60	404.2	90	0	4	4	1.39
SYFC223						89	90	1	1.45
SYFC224	695459	6476029	209/-60	403.1	112	49	61	12	3.38
SYFC224					Incl.	49	50	1	9.45
SYFC224					+	56	58	2	13.77
SYFC224						93	94	1	4.09
SYFC224						106	109	3	2.05
SYFC225	695273	6476054	360/-90	403	12	1	4	3	1.23
SYFC226	695233	6476069	360/-90	403	12	0	1	1	0.52
SYFC227	695486	6475910	360/-90	403	12	1	3	2	0.94
SYFC228	695484	6475867	360/-90	403	12				NSR
SYFC229	695466	6475923	360/-90	403	12				NSR
SYFC230	695452	6475933	360/-90	403	12	1	2	1	1.08
SYFC231	695430	6475937	360/-90	403	12	0	2	2	1.17
SYFC232	695412	6475947	360/-90	403	12				NSR
SYFC233	695398	6475957	360/-90	403	12	1	3	2	1.36
SYFC233						6	11	5	1.27
SYFC234	695380	6475968	360/-90	403	12	0	12	12	2.70
SYFC235	695362	6475979	360/-90	403	12	0	11	11	1.50
SYFC236	695348	6475990	360/-90	403	12	1	11	10	1.34
SYFC237	695334	6475997	360/-90	403	12	1	5	4	1.97
SYFC238	695312	6476014	360/-90	403	12	1	5	4	1.01
SYFC238						8	10	2	0.68
SYFC239	695300	6476023	360/-90	403	12	0	3	3	1.56
SYFC240	695284	6476034	360/-90	403	12	6	9	3	1.12
SYFC241	695259	6476041	360/-90	403	12	0	4	4	0.52

SYFC242	695247	6476055	360/-90	403	12	2	5	3	0.79
SYFC243	695468	6475945	360/-90	403	12	0	3	3	1.25
SYFC244	695482	6475946	360/-90	403	12	0	1	1	0.90
SYFC245	695490	6475957	360/-90	403	12	0	2	2	0.81
SYFC246	695679	6476160	360/-90	403	12				NSR
SYFC247	695657	6476133	360/-90	403	12				NSR
SYFC248	695640	6476091	360/-90	403	12				NSR
SYFC249	695631	6476077	360/-90	403	12				NSR
SYFC250	695617	6476063	360/-90	403	12				NSR
SYFC251	695607	6476051	360/-90	403	12				NSR
SYFC252	695595	6476032	360/-90	403	12				NSR
SYFC253	695583	6476014	360/-90	403	12				NSR
SYFC254	695572	6475999	360/-90	403	12	0	1	1	1.24
SYFC255	695559	6475982	360/-90	403	12	0	2	2	0.84
SYFC256	695616	6475853	213/-60	403	58				NSR
SYFC257	695636	6475881	213/-61	403	67	66	67	1	0.68
SYFC258	695657	6475917	212/-60	403	67	39	41	2	0.85
SYFC258						58	64	6	0.75
SYFC259	695680	6475948	214/-61	403	67	60	61	1	1.04
SYFC260	695545	6475876	217/-61	403	79	22	24	2	0.57
SYFC261	695559	6475910	217/-60	403	85				NSR
SYFC262	695584	6475940	217/-59	403	85	1	3	2	0.71
SYFC263	695573	6475974	210/-60	403	85				NSR
SYFC264	695349	6475988	217/-60	403	61	1	7	6	4.06
SYFC265	695376	6475971	216/-59	403	66	2	13	11	4.38
SYFC265					Incl.	8	9	1	18.6
SYFC266	695391	6475986	216/-60	403	64	0	5	5	2.44
SYFC266						12	21	9	12.72
SYFC266					Incl.	16	17	1	99.0
SYFC267	695361	6476005	216/-60	403	60	0	5	5	2.61
SYFC268	695238	6476246	214/-55	403	80	0	2	2	1.27
SYFC269	695181	6476242	210/-55	403	86	0	5	5	1.61
SYFC270	695567.8	6476092	218/-58	402.4	112	93	96	3	2.27
SYFC271	695586.2	6476145	196/-55	401.7	124	59	62	3	2.28
SYFC272	695377.2	6476006	35/-59	402.3	60	0	6	6	3.27
SYFC273	695394.8	6475996	40/-68	402.4	70	0	5	5	1.53
SYFC273						29	35	6	10.67
SYFC273					Incl.	29	32	3	19.58
SYFC274	695489.1	6476063	219/-79	402.4	76	0	4	4	2.05
SYFC274						40	46	6	9.32
SYFC274					Incl.	41	43	2	23.8
SYFC275	695498.3	6476122	216/-59	402.4	46	0	3	3	0.89
SYFC275			<u> </u>	<u> </u>	<u> </u>	13	16	3	1.63

SYFC275						35	37	2	0.98
SYFC276	695508.2	6476136	217/-60	403	58	0	5	5	1.66
SYFC276						46	48	2	2.03
SYFC277	695487.5	6476145	214/-59	401.9	58	0	4	4	0.62
SYFC277						38	42	4	6.68
SYFC277					Incl.	40	41	1	20.4
SYFC278	695475.9	6476152	217/-60	402	52	1	4	3	1.55
SYFC279	695464.4	6476159	218/-60	402.1	52	0	4	4	1.32
SYFC280	695417	6476015	218/-54	400	46	33	45	12	1.71
SYFC281	695425	6476030	216/-60	400	46	34	44	10	3.41
SYFC281					Incl.	34	37	3	5.21
SYFC281					Incl.	34	35	1	14.3
SYFC281					+	40	44	4	4.41
SYFC281					Incl.	41	42	1	11.15
SYFC282	695391	6476019	35/-70	399.5	40	6	13	7	0.91
SYFC283	695377.2	6476073	317/-60	395.6	34	6	11	5	0.85
SYFC284	695378	6476085	342/-60	395.1	34	3	5	2	1.16
SYFC284						11	16	5	3.86
SYFC284					Incl.	12	13	1	15.5
SYFC285	695387.8	6476081	51/-89	394.8	30	5	8	3	7.93
SYFC285						11	23	12	2.40
SYFC285					Incl.	14	15	1	10.4
SYFC286	695397.7	6476067	220/-59	394.6	36	0	7	7	2.57

Reported significant gold assay intersections (using a 0.50 g/t Au lower cut) are reported using +2m downhole intervals at plus 0.50 g/t gold, with up to 2m of internal dilution. Gold determination was by Fire Assay using a 50gm charge with AAS finishes and a lower limit of detection of 0.01 ppm Au. NSR denotes no significant results. See text for discussion on true widths. Coordinates are MGA94-Z50. Hole Abn denotes hole was abandoned due to excessive deviation away from its intended target.

JORC Table 1 Report for the Symes' Find Drilling

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 At all projects potential gold mineralised RC intervals are systematically sampled using industry standard 1m intervals, collected from reverse circulation (RC) drill holes and/or 4m composites from reconnaissance Aircore traverses. Surface and underground Diamond holes may be sampled along sub 1m geological contacts, otherwise 1m intervals are the default. Drill hole locations were designed to allow for spatial spread across the interpreted mineralised zone. All RC samples were collected and riffle split to 3-4kg samples on 1m metre intervals. Aircore samples are speared from piles on the ground and are composited into 4m intervals before despatching to the laboratory. Single metre bottom of hole Aircore samples are also collected for trace element determinations. Diamond core is half cut along downhole orientation lines. Half core is sent to the laboratory for analysis and the other half is retained for future reference. Standard fire assaying was employed using a 50gm charge with an AAS finish for all diamond, RC and Aircore chip samples. Trace element determination was undertaken using a multi (4) acid digest and ICP-AES finish.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling was completed using best practice NQ diamond core, 5 ¾" face sampling RC drilling hammers for all RC drill holes at Mount Magnet or 3" Aircore bits/RC hammers at Symes' Find/Edna May.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All diamond core is jigsawed to ensure any core loss, if present is fully accounted for. Bulk RC and Aircore drill holes samples were visually inspected by the supervising geologist to ensure adequate clean sample recoveries were achieved. Note Aircore drilling while clean is not used in any resource estimation work. Any wet, contaminated or poor sample returns are flagged and recorded in the database to ensure no sampling bias is introduced. Zones of poor sample return both in RC and Aircore are recorded in the database and cross checked once assay results are received from the laboratory to ensure no misrepresentation of sampling intervals has occurred. Of note, excellent RC drill recovery is

		reported from all RC holes. Reasonable recovery is noted for all Aircore samples. Zero sample recovery is achieved while navi drilling. The navi lengths are kept to a minimum and avoided when close to potentially mineralised units.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples are geologically logged on site by professional geologists. Details on the host lithologies, deformation, dominant minerals including sulphide species and alteration minerals plus veining are recorded relationally (separately) so the logging is interactive and not biased to lithology. Drill hole logging is qualitative on visual recordings of rock forming minerals and quantitative on estimates of mineral abundance. The entire length of each drill hole is geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Duplicate samples are collected every 25th sample from the RC and Aircore chips as well as quarter core from the diamond holes. Dry RC 1m samples are riffle split to 3-4kg as drilled and dispatched to the laboratory. Any wet samples are recorded in the database as such and allowed to dry before splitting and dispatching to the laboratory. All core, RC and Aircore chips are pulverized prior to splitting in the laboratory to ensure homogenous samples with 85% passing 75um. 200gm is extracted by spatula that is used for the 50gm or 30 gm charge on standard fire assays. All samples submitted to the laboratory are sorted and reconciled against the submission documents. In addition to duplicates a high grade or low grade standard is included every 25th sample, a controlled blank is inserted every 100th sample. The laboratory uses barren flushes to clean their pulveriser and their own internal standards and duplicates to ensure industry best practice quality control is maintained. The sample size is considered appropriate for the type, style, thickness and consistency of
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 mineralization. The fire assay method is designed to measure the total gold in the core, RC and Aircore samples. The technique involves standard fire assays using a 50gm or 30 gm sample charge with a lead flux (decomposed in the furnace). The prill is totally digested by HCl and HNO3 acids before measurement of the gold determination by AAS, while the Edna May samples employed ICP finishes to give a lower limit of detection. Aqua regia digest is considered adequate for surface soil sampling. No field analyses of gold grades are completed. Quantitative analysis of the gold content and trace elements is undertaken in a controlled laboratory environment. Industry best practice is employed with the inclusion of duplicates and standards as discussed above and

Industry best practice is employed with the inclusion of duplicates and standards as discussed above and

		used by Ramelius as well as the laboratory. All Ramelius standards and blanks are interrogated to ensure they lie within acceptable tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grades exists.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Alternative Ramelius personnel have inspected the diamond core, RC and Aircore chips in the field to verify the correlation of mineralised zones between assay results and lithology, alteration and mineralization. All holes are digitally logged in the field and all primary data is forwarded to Ramelius' Database Administrator (DBA) in Perth where it is imported into Datashed, a commercially available and industry accepted database software package. Assay data is electronically merged when received from the laboratory. The responsible project geologist reviews the data in the database to ensure that it is correct and has merged properly and that all the drill data collected in the field has been captured and entered into the database correctly. The responsible geologist makes the DBA aware of any errors and/or omissions to the database and the corrections (if required) are corrected in the database immediately. No adjustments or calibrations are made to any of the assay data recorded in the database. No new mineral resource estimate is included in this report.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are picked up using accurate DGPS survey control. All down hole surveys are collected using downhole Eastman single shot surveying techniques provided by the drilling contractors. All Mt Magnet and Edna May holes are picked up in MGA94 – Zone 50 grid coordinates. DGPS RL measurements captured the collar surveys of the drill holes prior to the resource estimation work.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Most RC drilling at Symes' Find was looking for extensions to the known mineralised systems. Good continuity has been achieved from the RC drilling. Given the previous limited understanding of the target horizon infill drilling was necessary to help define the continuity of mineralisation. No sampling compositing has been applied within key mineralised intervals.
Orientation of data in relation	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The core drilling and RC drilling is completed orthogonal to the interpreted strike of the target horizon(s), plunge projection of higher grade shoots in the case of Symes' Find. Aircore drilling is

to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	completed on systematic MGA E-W or N-S traverses with holes nominally 50m apart.
Sample security	The measures taken to ensure sample security.	Sample security is integral to Ramelius' sampling procedures. All bagged samples are delivered directly from the field to the assay laboratory in Perth, whereupon the laboratory checks the physically received samples against Ramelius' sample submission/dispatch notes.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are reviewed prior to the commencement of new work programmes to ensure adequate procedures are in place to maximize the sample collection and sample quality on new projects. No external audits have been completed to date.

Section 2 Reporting of Exploration Results

Criteria	IOPC Code explanation	Commontary
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are located on granted Mining Leases (ML77/1111 + EL77/2474) at Symes' Find in Western Australia (owned 100% by Ramelius Resources Limited's subsidiary Edna May Operations Pty Ltd. Symes' Find is located over private farm land where the veto on the top 30m has been removed via executed compensation agreement(s) with the various landowners. Heritage surveys are completed prior to any ground disturbing activities in accordance with Ramelius' responsibilities under the Aboriginal Heritage Act in Australia. Currently all the tenements are in good standing. There are no known impediments to obtaining a licences to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration and mining by other parties has been reviewed and is used as a guide to Ramelius' exploration activities. Previous parties have completed shallow RAB, Aircore drilling and RC drilling and shallow open pit mining has previously occurred at Symes' Find. This report concerns only exploration results generated by Ramelius up until Oct 2019, that were not previously reported to the ASX.
Geology	Deposit type, geological setting and style of mineralisation.	The targeted mineralisation at Symes' Find is typical of orogenic structurally controlled Archaean gold lode systems. In all instances the mineralisation is controlled by anastomosing shear zones/fault zones passing through competent rock units, brittle-ductile shearing is common in the gneissic rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	 All the drill holes reported in this report have the following parameters applied. All drill holes completed, including holes with no significant results (as defined in the Attachments) are reported in this

information for all Material drill holes:

- o easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- o dip and azimuth of the hole
- o down hole length and interception depth
- o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

announcement.

- Easting and northing are given in MGA94 coordinates as defined in the Attachments for Mount Magnet and Edna May. NAD27(USA) is used in Nevada.
- RL is AHD
- Dip is the inclination of the hole from the horizontal.
 Azimuth is reported in magnetic degrees as the direction the hole is drilled. MGA94 and magnetic degrees vary by <10 in the project area. All reported azimuths are corrected for magnetic declinations.
- Down hole length is the distance measured along the drill hole trace. Intersection length is the thickness of an anomalous gold intersection measured along the drill hole trace.
- Hole length is the distance from the surface to the end of the hole measured along the drill hole trace.
- No results currently available from the exploration drilling are excluded from this report. Gold grade intersections >0.4 g/t Au within 4m Aircore composites or 2m >0.5 g/t Au within single metre RC samples (with up to 4m of internal dilution) are considered significant in the broader mineralised host rocks. Diamond core samples are generally cut along geological contacts or up to 1m maximum.
- Gold grades greater than 0.5 g/t Au are highlighted where good continuity of higher grade mineralization is observed. 0.1 g/t Au cut-offs are used for reconnaissance exploration programmes.

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- The first gold assay result received from each sample reported by the laboratory is tabled in the list of significant assays. Subsequent repeat analyses when performed by the laboratory are checked against the original to ensure repeatability of the assay results.
- Weighted average techniques are applied to determine the grade of the anomalous interval when geological intervals less than 1m have been sampled.
- Exploration drilling results are generally reported using a 0.5 g/t Au lower cut-off for RC and diamond or 0.1 q/t Au for Aircore drilling (as described above and reported in the Attachments) and may include up to 4m of internal dilution. Significant resource development drill hole assays are reported greater than 0.5 or 8.0 g/t Au and are also reported separately. For example, the broader plus 1.0 g/t Au intersection of 6.5m @ 30.5 g/t Au contains a highergrade zone running plus 8 g/t Au and is included as 4m @ 48.5 g/t Au. Where extremely high gold intersections are encountered as in this example, the highest-grade sample interval (eg 1.0m @ 150 g/t Au) is also reported. All assay results are reported to 3 significant figures in line with the analytical precision of the laboratory techniques employed.
- No metal equivalent reporting is used or applied.

• The intersection length is measured down the length of the hole and is not usually the true width. When

Relationship between

 These relationships are particularly important in the reporting of Exploration

mineralisation widths and intercept lengths	Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	sufficient knowledge on the thickness of the intersection is known an estimate of the true thickness is provided in the Attachments. The known geometry of the mineralisation with respect to the drill holes reported in this report is now well constrained.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Detailed drill hole plans and sectional views of Symes' Find have been provided previously. Given the interpreted shallow dips of the multiple mineralisation lodes at Symes' Find the cross-sectional view (orthogonal to the plunging shoots) is considered the best 2-D representation of the known spatial extent of the mineralization intersected to date.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill holes completed to date are reported in this report and all material intersections as defined) are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that has been collected is considered meaningful and material to this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Future exploration includes step out RC and diamond drilling below Symes' Find to define the full extent of the mineralisation discovered to date and to step out drilling throughout the wheat paddocks that surround the mineralisation defined to date.