RAMELIUS

ACN 001 717 540 ASX code: RMS 30 July 2018 For Immediate Release

June 2018 Quarterly Activities Report

RELEASE

HIGHLIGHTS

- Group gold production of 58,285 ounces at an AISC of A\$1,176/oz:
 - o Mt Magnet & Vivien 31,424 ounces at an AISC of A\$1,243/oz
 - o Edna May 26,861 ounces at an AISC of A\$1,101/oz
- Record annual group gold production of 208,118 ounces at an AISC of A\$1,191/oz (FY2017: 125,488 ounces at an AISC of A\$1,169/oz)
- Cash & gold on hand at 30 June 2018 of A\$95.5M (March 2018 Qtr: A\$75.4M)
- Edna May Resource and Reserve increases announced 6th June 2018
- Significant progress of resource drilling at Mt Magnet's Eridanus project and mining studies at both Shannon and Hill 60 underground projects

PRODUCTION GUIDANCE – SEPTMBER 2018 QUARTER

- Group gold production for the September 2018 Quarter is expected to be between 50-54,000 ounces at an AISC of ~A\$1,250/oz:
 - o Mt Magnet & Vivien 30,000 ounces at an AISC of A\$1,300/oz
 - o Edna May 22,000 ounces at an AISC of A\$1,200/oz
- Capital & Project development expenditure of approximately A\$8.6M:
 - o Shannon & Hill 60 undergrounds (Mt Magnet) A\$3.2M
 - o Exploration (Mt Magnet) A\$4.4M
 - o Exploration / Underground C&M (Edna May) A\$1.0M

PRODUCTION GUIDANCE - FY2019 FULL YEAR

- Annual group gold production for FY2019 expected to be between 200-220,000 ounces at an AISC of A\$1,150-A\$1,250/oz
- Capital development, including Exploration expenditure of A\$13.5M, is expected to be A\$33.0M

CORPORATE

- Quarterly gold sales of 52,165 ounces for total revenue of A\$89.1M from an average gold price of A\$1,708/oz
- Cash & gold on hand of A\$95.5M (Mar '18 Qtr: A\$75.4M), after A\$8.8M capital development expenditure comprising Shannon open pit pre-strip (A\$5.0M), exploration at both Mt Magnet and greenfields (A\$2.4M), and Edna May underground care & maintenance and exploration (A\$1.4M)
- At 30 June 2018, forward gold sales consisted of 140,250 ounces of gold at an average price of A\$1,719/oz over the period to November 2019
- Nil bank debt

30 July 2018

ISSUED CAPITAL

Ordinary Shares: 528M

DIRECTORS

Non-Executive Chairman: Kevin Lines Non-Executive Directors: Michael Bohm David Southam

Managing Director: Mark Zeptner

www.rameliusresources.com.au info@rameliusresources.com.au

RAMELIUS RESOURCES LIMITED

Registered Office

Level 1, 130 Royal Street East Perth, WA 6004 Tel +61 8 9202 1127 PO Box 6070 East Perth, WA 6892

Adelaide Office

140 Greenhill Road Unley, SA 5061 Tel +61 8 8271 1999 Fax +61 8 8271 1988

JUNE 2018 QUARTER PRODUCTION & FINANCIAL SUMMARY

		Combined	÷	
Operations	Unit	Vivien	Edna May	Group
	onit		Eana may	01040
OP ore mined (high grade only)	kt	389	644	1,032
OP grade mined	g/t	1.12	1.35	1.26
OP contained ore (high grade only)	OZ	13,957	28,017	41,973
LIG ore mined (high grade only)	kt	118		118
UG grade mined (ligh grade only)	a/t	5.61		5.61
UG contained gold (high grade only)	9,1	21,353		21 353
Se contained gold (high grade only)	02	21,000		21,000
Total ore mined	kt	507	644	1,151
Total tonnes processed	kt	555	647	1.201
Grade	a/t	1.80	1.35	1.56
Contained gold	OZ	32,171	28,099	60,271
Recovery	%	95.4	94.6	95.1
Gold recovered	OZ	30,692	26,596	57,287
Gold poured	OZ	31,424	26,861	58,285
		07 / / 0		50.475
Gold sales	OZ	27,663	24,502	52,165
Achieved gold price	A\$/oz	\$1,708	\$1,708	\$1,708
Cost summary				
Mining – operating	Δ\$M	19 5	11.8	31.3
Ore purchases	A\$M	-	0.2	0.2
Processing	A\$M	7.7	10.5	18.2
Administration	A\$M	4.3	2.3	6.6
Stockpile adjustments	A\$M	(1.0)	(1.0)	(2.0)
Other	A\$M	(0.1)	(0.1)	(0.2)
C1 cash cost	A\$M	30.4	23.7	54.2
C1 cash cost per ounce	A\$/rec. oz	\$991	\$892	\$945
Mining costs – mine development	A\$M	2.8		2.8
Royalties	A\$M	2.7	2.0	4.8
Movement in finished goods	A\$M	(4.1)	(0.6)	(4.7)
Sustaining capital	A\$M	1.5	0.8	2.3
Other	A\$M	0.2	0.3	0.5
Corporate overheads	A\$M	0.8	0.7	1.5
Total AISC's	A\$M	34.4	27.0	61.4
AISC per ounce	A\$/sold oz	\$1,243	\$1,101	\$1,176

Table 1: June 2018 Quarter production & financial summary

JUNE YEAR TO DATE PRODUCTION & FINANCIAL SUMMARY

		Combined		
Operations	Unit	Vivien	Edna May	Group
	Onit	VIVICII	Eana may	Group
OP ore mined (high grade only)	kt	1,026	2,079	3,105
OP grade mined	a/t	1.36	1.19	1.25
OP contained ore (high grade only)	OZ	44,759	79,656	124,415
UG ore mined (high grade only)	kt	410		410
UG grade mined	g/t	6.40		6.40
UG contained gold (high grade only)	OZ	84,299		84,299
Total ore mined	kt	1,436	2,079	3,515
Total tonnes processed	kt	1,995	2,010	4,005
Grade	g/t	2.23	1.20	1.71
Contained gold	OZ	143,141	77,352	220,494
Recovery	%	94.3	93.9	94.2
Gold recovered	OZ	135,021	72,611	207,632
Gold poured	OZ	135,597	72,521	208,118
Gold sales	OZ	135,565	67,520	203,085
Achieved gold price	A\$/oz	\$1,670	\$1,696	\$1,679
<u>Cost summary</u>				
Mining – operating	A\$M	53.1	39.8	92.9
Ore purchases	A\$M	-	4.5	4.5
Processing	A\$M	32.9	33.7	66.6
Administration	A\$M	18.8	6.7	25.5
Stockpile adjustments	A\$M	6.3	(8.1)	(1.8)
Other	A\$M	(0.2)	(0.4)	(0.7)
	A\$M	110.8	/6.2	187.1
C1 cash cost per ounce	A\$/rec. oz	\$821	\$1,050	\$901
Mining costs – mine development	A\$M	29.9	-	29.9
Royalties	A\$M	11.5	5.3	16./
Movement in finished goods	A\$M	(0.2)	(4.6)	(4.8)
Sustaining capital	A\$M	3.8	1.4	5.2
Uther	A\$M	0.8	1.0	1.8
Corporate overheads	A\$M	4.1	1.9	6.0
I otal AISC's	A\$M	160.7	81.2	241.9
AISC per ounce	A\$/sold oz	\$1,186	\$1,203	\$1,191

Table 2: June 2018 Year to Date production & financial summary

OPERATIONS

Mt Magnet Gold Mine (WA)

Open Pit

Mining continued to plan throughout the Quarter. Milky Way and Stellar West pits were the primary ore sources. Minor delays were experienced due to wet weather and the resultant wet pit floors being mined through the transitional/fresh rock interface.

The Shannon open pit commenced during the Quarter and made rapid progress. The upper portion of the pit is essentially all waste and mining of the pit will provide moderate volumes of high grade ore in the September 2018 Quarter and access for an underground portal later in calendar year 2018.

Claimed high-grade ore mined at Mt Magnet (including underground Water Tank Hill ore) improved on last quarter, with 441,808 tonnes @ 1.55 g/t for 21,991 ounces. Mt Magnet mill production (excluding Vivien) was good and reconciled at 483,030 tonnes @ 1.27 g/t for 18,650 ounces recovered.

Figure 1: Mt Magnet key mining & exploration areas

Figure 2: Milky Way open pit

Underground

Stope production continued at Water Tank Hill during the Quarter with claimed mined production of 53,012 tonnes @ 4.70 g/t for 8,034 ounces. The decline was re-commenced to access the additional 160mRL level approved last Quarter.

Processing

The June 2018 Quarter saw higher tonnage throughput than the March 2018 Quarter countered by a reduction in the mill head grade.

Total mill production (Mt Magnet and Vivien) was 554,579 tonnes @ 1.80 g/t for 32,171 recovered ounces at an excellent recovery of 95.4% (gold poured for the Quarter was 31,424 ounces). AISC for the Quarter was A\$1,243/oz.

Guidance for the September 2018 Quarter is expected to be approximately 30,000 ounces, expected to be delivered at an AISC of A\$1,300/oz (refer Figure 4). Throughput will be lower due to a planned 6 monthly SAG mill re-line occurring in July 2018 although grade will be higher to offset this.

Figure 3: Mt Magnet Quarterly Milled Tonnes & Head Grade

Figure 4: Mt Magnet Quarterly Production & Costs

Vivien Gold Mine (WA)

Production continued strongly throughout the Quarter with good contributions from both stoping and development. Ore development was sourced from the 160, 180, 200, 360 and 380 levels. Development in the upper south 380 level was very encouraging with good lode mined as expected. As a result, the 360 South drive commenced and levels to the south on the 340 and 400 are planned.

During the Quarter an extra level below the current mined plan at the 140mRL was approved and the decline was recommenced to access it.

Stope production was conducted from the 220-240 north and 280-300 north levels.

Total claimed mined production was 63,691 tonnes @ 6.50 g/t for 13,318 ounces. Ore haulage continued throughout the Quarter and Vivien attributed mill production was 71,549 tonnes @ 5.40 g/t for 12,042 recovered ounces.

Figure 5: Vivien development/stoping progress (grey) - oblique view to east

Edna May Gold Mine (WA)

Mining

Production from the Stage 2 open pit continued throughout the Quarter. Claimed high-grade ore mined was 643,549 tonnes @ 1.35 g/t for 28,017 ounces mined. A further 202,482 tonnes of low-grade material at 0.47 g/t for 3,075 ounces was also mined, as the strip ratio reduced from the previous Quarter.

Processing

Mill throughput for the Quarter was in line with the prior Quarter. Total material milled during the Quarter was 646,507 tonnes @ 1.35 g/t for 26,596 recovered ounces (gold poured 26,861 ounces).

Unit costs continued to decrease as the Stage 2 open pit deepened, with an AISC achieved of A\$1,101/oz for the Quarter (refer Figure 6), giving an overall result for the 9 months of Ramelius ownership in FY2018 of 72,521 ounces poured at an AISC of A\$1,203/oz.

Figure 6: FY2018 Edna May Stage 2 Production Profile

Guidance for the September 2018 Quarter is for approximately 22,000 ounces at an AISC of A\$1,200/oz.

PRODUCTION TARGETS

FY2018

Group gold production has achieved a new record total for the FY2018 financial year of **208,118 ounces at an AISC of A\$1,191/oz**, with the Quarterly breakdown by ore source shown below in Figure 7.

Figure 7: FY2018 Group Production Profile

The matching capital requirements, by Quarter, are shown below in Table 3 whereby investments in open pit pre-strip and exploration were weighted heavily towards the first half of the financial year. The second half does include capital for the commencement of the Shannon open pit at Mt Magnet which was not originally planned in the FY2018 year but has been brought forward to enable earlier access to a portal position for a likely Shannon underground project to commence in FY2019.

Table 3: FY2018 Group Capital Expenditure

Project (A\$)	Sept 17 Qtr (Actual)	Dec 17 Qtr (Actual)	Mar 18 Qtr (Actual)	Jun 18 Qtr (Actual)	FY2018
Milky Way Open Pit	\$ 11.1 M	\$ 2.5 M	-	-	\$ 13.6 M
Mt Magnet Satellite Pits	\$ 5.0 M	\$ 4.6 M	\$ 2.6 M	\$ 5.0 M	\$ 17.2 M
Exploration (Mt Magnet & Vivien)	\$ 3.8 M	\$ 3.8 M	\$ 2.8 M	\$ 2.4 M	\$ 12.8 M
U/G Dev. & Exploration (Edna May)	-	\$ 2.3 M	\$ 3.7 M	\$ 1.4 M	\$ 7.4 M
TOTAL	\$ 19.9 M	\$13.2 M	\$ 9.1 M	\$ 8.8 M	\$51.0 M

FY2019

Group gold production for FY2019 is expected to be in line with FY2018, maintaining a plus-200,000oz per year run rate, with production expected to be 200-220,000 ounces and an AISC of A\$1,150–A\$1,250/oz, with the Quarterly breakdown by ore source shown below in Figure 8.

Figure 8: FY2019 Group Production Profile

The matching capital requirements, by Quarter, are shown below in Table 4 whereby investments in open pit pre-strip and exploration are somewhat weighted towards the first half of the financial year, with the commencement of both the Hill 60 and Shannon undergrounds projects (Mt Magnet) and the Greenfinch open pit at Edna May.

Table 4: FY2019 Group Capital Requirements

Project (A\$)	Sept 18 Otr (Forecast)	Dec 18 Qtr (Forecast)	Mar 19 Qtr (Forecast)	Jun 19 Otr (Forecast)	FY2019
Shannon & Hill 60 UG (Mt Magnet)	\$ 3.2 M	\$ 3.0 M	\$ 3.4 M	\$ 1.1 M	\$ 10.7 M
Greenfinch Open Pit (Edna May)	-	\$ 6.4 M	-	-	\$ 6.4 M
Exploration	\$ 4.4 M	\$ 3.9 M	\$ 2.6 M	\$ 2.6 M	\$ 13.5 M
Underground C&M (Edna May)	\$ 1.0 M	\$ 0.5 M	\$ 0.5 M	\$ 0.4 M	\$ 2.4 M
TOTAL	\$ 8.6 M	\$ 13.8 M	\$ 6.5 M	\$ 4.1 M	\$33.0 M

PROJECT DEVELOPMENT

Greenfinch Project (Edna May, WA)

Approval processes for the Greenfinch pit have progressed, including an EPA submission, consultation with stakeholders, and engagement with the local Shire in respect of relocation of the Warrachuppin Road. Hydrology and geotechnical studies have been updated and Mining Proposal and Clearing Permit documents were submitted.

Shannon Project (Mt Magnet, WA)

Good progress was made on the Shannon underground mine design and mining of the pit has been brought forward to allow commencement of the underground project. A Mining Proposal amendment for the Shannon Underground is ready to be submitted and an underground Ore Reserve will be published in the September 2018 Quarter.

Hill 60 Project (Mt Magnet, WA)

The Hill 60 deposit is located 500m south of the current St George/Water Tank Hill underground mine. Mineralisation is hosted within a north-striking, steep west-dipping, 3 to 10m wide BIF unit. Previous mining includes historic shaft underground mining, occurring mainly between 1925 and 1942, with estimated production of 53,000oz. This was followed by mining of a 50m deep pit by Harmony Gold in 2005. The pit targeted remnant lodes, lode margins and fill and generated 220,000t @ 2.64 g/t for 18,700 ounces.

Recent drilling at Hill 60 was interpreted and modelled and a new resource model generated. Mine design and evaluation of the model is now in progress and the approvals process has commenced. A new Resource and Reserve will be published in the September 2018 Quarter.

EXPLORATION SUMMARY

Ramelius currently has a suite of Australian gold exploration projects at various stages of advancement, as shown on Figure 9. Mt Magnet, in WA, continued to be focus of exploration drilling during the Quarter.

Figure 9: Current Brownfields and Greenfields Exploration Projects location plan

Mt Magnet Gold Project (WA)

An aggregate of 14,377m of exploratory (GXRC1841 – 1872) and infill RC (GXRC0583 – 642) drilling was completed at Mt Magnet during the Quarter, primarily infill drilling the Eridanus discovery located south of the Shannon Deposit (Resource Development). Ramelius also completed 779.02m of diamond drilling from 3 holes (GXDD0064 - 66) at Hill 60 and Eridanus.

See Attachments 1 to 3 for a complete list of significant exploration drill hole intersections referred to in this report.

Eridanus Prospect

Spectacular high-grade results continue to be received from infill RC drilling (25m centres) at Eridanus. The RC drilling is confirming a broad continuous supergene blanket of gold mineralisation from 20mbs. Diamond drilling has identified a series of narrow northwest striking quartz healed shears, quartz-tourmaline stockwork vein sets and lesser northeast striking sheared quartz healed vein sets. Visible gold has been noted in northeast trending carbonate-quartz vein sets. An understanding on the paragenesis of the various vein arrays is underway but the current interpretation of shallow to moderate southerly dipping mineralised fracture sets cut by steeper northwest and/or northeast quartz healed veins (as depicted in Figure 10) remains unchanged. Significant (>0.5 g/t Au) assay results not previously reported include:

- > 37m at 2.52 g/t Au from 23m in GXRC0586 (supergene blanket)
- > 10m at 6.49 g/t Au from 120m in GXRC0596 (quartz vein/shear)

- > 13m at 7.17 g/t Au from 54m in GXRC0617 (quartz vein/shear)
- > 20m at 21.98 g/t Au from 74m in GXRC0619 (quartz vein/shear)
- > 8m at 4.56 g/t Au from 113m in GXRC0622 (quartz vein/shear)
- > 7m at 6.79 g/t Au from 55m in GXRC0632 (supergene blanket)
- > 6m at 6.77 g/t Au from 51m in GXRC0637 (quartz vein/shear)

True widths of the supergene mineralisation are estimated to be 85% of the reported down hole intersections while the subvertical quartz veins/shears may be as little as 20%, albeit significant swarming of the veins is noted on adjacent 25m spaced drill sections. Further step out RC drill testing is planned for the September 2018 Quarter, extending westwards to test for, previously unrecognised, mineralised stacked lodes below the historical Lone Pine pit (refer Figures 11 - 13).

Lone Pine Prospect

RC drilling was completed along the western flank of the mineralised ultramafic – porphyry contact at Lone Pine (refer Figure 10) to scope for deeper high-grade gold mineralisation below the shallow oxide pit. Better assay results returned from the drilling include:

> 3m at 3.76 g/t Au from 72m + 2m at 7.12 g/t Au from 115m in GXRC1847, and

> 3m at 8.68 g/t Au from 154m + 4m at 5.38 g/t Au from 163m in GXRC1848

The drilling has identified a coherent 40° south plunging mineralised shoot that remains open with depth. Follow-up drilling in conjunction with step out Eridanus drilling will be completed next Quarter. True widths are estimated to be 65% of the reported down hole intersections.

Hill 60 / New Chum / Heracles Prospects

Exploratory RC drill holes were completed around the Hill 60 resource area (refer Project Development section) testing inferred buried banded iron formation (BIF) targets at Heracles (north of Hill 60) and the historical New Chum Lode between St George and Hill 60. Results from New Chum and the Heracles drilling were disappointing but the Heracles drilling did confirm the source of the magnetic anomaly as BIF. Deeper RC drilling into inferred structurally thickened targets at depth will be planned accordingly.

Shannon South Prospect

Exploratory step out RC drilling away from the Shannon Resource returned an intersection of **3m at 6.44 g/t Au from 180m** in GXRC1695 (drilled September 2017 Quarter). The true width is estimated to be 90% of the reported down hole intersection. The intersection is recently interpreted to be the strike extension to the Shannon Shear hosted by sericite-pyrite altered felsic porphyry in contact with ultramafic rocks. No other deeper drilling occurs within 180m strike of this intersection which is now the focus of infill drilling.

Figure 10: Mine/Prospect location map of the Boogardie Basin highlighting the new Eridanus Prospect located in the gap between the historical Lone Pine and Theakston pits

Figure 11: Eridanus Prospect geology plan and drilling

Figure 12: Eridanus RC drilling cross section through 576650mE

Figure 13: Eridanus RC drilling cross section through 576825mE

Edna May Gold Project (WA)

Discussions are continuing with various parties to acquire strategic exploration ground around the Edna May gold mine, following the acquisition of the mine last year.

Tanami Joint Venture (NT) – Ramelius 85%

No field work was completed during the Quarter. Negotiations continue with various parties for Ramelius to divest its interest in the Tanami region.

Yandan Project (QLD)

Following disappointing results, no further exploration is planned at Yandan. Ramelius intends to relinquish the project.

Jupiter Farm-in & Joint Venture (Nevada, USA) – Ramelius earning 75%

Follow-up RC drilling is scheduled to commence next Quarter.

South Monitor Farm-in & Joint Venture (Nevada, USA) – Ramelius earning up to 80%

Following disappointing exploration drilling results, Ramelius withdrew from the South Monitor farm-in during the Quarter.

CORPORATE & FINANCE

Gold sales for the June 2018 Quarter were 52,165 ounces at an average price of A\$1,708/oz for revenue of A\$89.1M.

As at 30 June 2018, the Company had A\$75.0M of cash and A\$20.5M of gold bullion on hand for a total of A\$95.5M. This represents an increase of A\$20.1M (A\$9.9M in cash and A\$10.2M in gold bullion) from the March 2018 Quarter. This increase in cash was largely due to a strong AISC cash margin of A\$27.7M. These operational cash flows were used for capital development of A\$8.8M comprising Shannon open pit pre-strip (A\$5.0M), exploration at both Mt Magnet and greenfields (A\$2.4M), and Edna May underground care & maintenance and exploration (A\$1.4M). In addition to this there was also a decrease in working capital of approximately A\$4.5M due to a reduction in trade creditors at 30 June 2018.

At 30 June 2018, forward gold sales consisted of 140,250 ounces of gold at an average price of A\$1,719/oz over the period July 2018 to November 2019. The hedge book summary is shown below in Table 5.

Hadaa Book		τοται		
печуе воок	Dec-18 Half	Jun-19 Half	Dec-19 Half	TUTAL
Ounces	60,750	49,500	30,000	140,250
Price (A\$/oz)	1,698	1,721	1,758	1,719

 Table 5: Hedge Book Summary

For further information contact:

Mark Zeptner Managing Director Ramelius Resources Limited Ph: +61 8 9202 1127 Tim Manners Chief Financial Officer Ramelius Resources Limited Ph: +61 8 9202 1127 Duncan Gordon Executive Director Adelaide Equity Partners Ph: +61 8 8232 8800

FORWARD LOOKING STATEMENTS

This report contains forward looking statements. The forward looking statements are based on current expectations, estimates, assumptions, forecasts and projections and the industry in which it operates as well as other factors that management believes to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. The forward looking statements relate to future matters and are subject to various inherent risks and uncertainties. Many known and unknown factors could cause actual events or results to differ materially from the estimated or anticipated events or results expressed or implied by any forward looking statements. Such factors include, among others, changes in market conditions, future prices of gold and exchange rate movements, the actual results of production, development and/or exploration activities, variations in grade or recovery rates, plant and/or equipment failure and the possibility of cost overruns. Neither Ramelius, its related bodies corporate nor any of their directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy, correctness, completeness, adequacy, reliability or likelihood of fulfilment of any forward looking statement, or any events or results expressed or implied in any forward looking statement, except to the extent required by law.

COMPETENT PERSONS

The information in this report that relates to Exploration Results, Mineral Resources and Ore Reserves is based on information compiled by Kevin Seymour (Exploration Results), Rob Hutchison (Mineral Resources) and Duncan Coutts (Ore Reserves), who are Competent Persons and Members of The Australasian Institute of Mining and Metallurgy. Kevin Seymour, Rob Hutchison and Duncan Coutts are full-time employees of the company. Kevin Seymour, Rob Hutchison and Duncan Coutts have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Kevin Seymour, Rob Hutchison and Duncan Coutts consent to the inclusion in this report of the matters based on their information in the form and context in which it appears.

ABOUT RAMELIUS

Figure 14: Ramelius' Operations & Development Project Locations

Ramelius owns and operates the Mt Magnet, Edna May and Vivien gold mines, all in Western Australia (refer Figure 14).

Ore from high-grade Vivien underground mine, located near Leinster, is trucked to the Mt Magnet processing plant where it is blended with ore from both underground and open pit sources.

The Edna May operation, purchased from Evolution Mining in October 2017, is currently a single open pit operation feeding an adjacent processing plant.

Magnet, WA		- 3	3			5	,		,
Hole Id	Easting	Northing	Az/Dip	RL	F/Depth (m)	From (m)	To (m)	Interval (m)	g/t Au
GXRC1841	576553	6894300	002/-60	429	160	87	91	4	1.43
Eridanus						124	130	6	3.76
					Incl.	125	126	1	12.5
						140	142	2	2.49
GXRC1842	576560	6894260	002/-60	429	154	65	67	2	3.10
Eridanus	0,0000	000 1200	002/00	120	101	114	122	8	1.31
GXRC1843	576600	6894160	000/-60	429	160	46	52	6	1.62
Eridanus									
GXRC1844	576350	6894417	123/-55	429	166				NSR
Lone Pine	570070	0004400	004/00	400	4.40	4	0		0.50
GARC 1845	576370	6894423	091/-60	428	142	4	8	4	0.58
GXRC1846	576270	6894305	090/-60	428	64	32	30	Hole	Abn
Lone Pine	010210	0004000	000/ 00	720	04				7.011
GXRC1847	576289	6894180	091/-59	428	184	24	32	8	0.57
Lone Pine						36	40	4	1.01
						46	53	7	1.62
						72	75	3	3.76
						93	100	7	0.95
						107	111	4	1.06
					Incl	115	117	2	7.12
					Inci.	110	117	5	12.9
GXRC1848	576290	6894150	092/-59	428	238	110	112	2	3.19
Lone Pine	010200	0001100	002, 00	.20	200	154	157	3	8.68
					Incl.	156	157	1	21.0
						163	167	4	5.38
					Incl.	165	166	1	14.2
						214	217	3	1.02
01/004040	570050	0004005	000/00	400	40	226	228	2	2.99
GXRC1849	576258	6894305	090/-60	429	46			Hole	Abh
GXRC1850	576281	6894265	092/-56	428	166	32	36	4	0.58
Lone Pine	070201	0004200	002/ 00	720	100	92	94	2	2.78
GXRC1851	576290	6894230	092/-60	428	208	24	32	8	1.03
Lone Pine						36	46	10	0.97
						146	150	4	1.56
0.100						163	166	3	3.13
GXRC1852	576295	6894120	095/-57	428	190	167	174	1	0.72
GXRC1853	576261	6894285	084/-61	428	250				NSR
Lone Pine	070201	0004200	00-7/01	720	200				NOR
GXRC1854	581746	6894660	089/-60	431	101				NSR
Hill 60									
GXRC1855	581785	6894665	091/-59	431	125				NSR
Hill 60									
GXRC1856	581821	6894665	091/-61	431	131				NSR
	581823	6804625	004/-76	430	173				NSP
Hill 60	501025	0034023	034/-70	430	175				NOR
GXRC1858	581828	6894585	092/-76	431	173	134	140	6	3.12
Hill 60				-	Incl.	136	137	1	13.1
GXRC1859	581718	6894726	093/-65	431	323				NSR
Heracles									
GXRC1860	581298	6894585	092/-76	431	123	6	13	7	0.95
New Chum	591000	6904075	000/00	400	140				NOD
New Chum	301920	0094075	090/-00	429	143				NOR
GXRC1862	581885	6894875	091/-62	430	103				NSR
New Chum	001000		001/ 02						
GXRC1863	581849	6894875	090/-60	430	102	11	13	2	1.24
	1	1	1	1	1	1	1	1	1

Attachment 1:	Significant (>0.5	g/t Au) Explo	ration RC drilling fro	om Eridanus, Lone	Pine and Hill 60, Mount
---------------	-------------------	---------------	------------------------	-------------------	-------------------------

New Chum									
GXRC1864 Mew Chum	581811	6894874	089/-60	431	102				NSR
GXRC1865 New Chum	582093	6894956	071/-61	429	84				NSR
GXRC1866 New Chum	582066	6894947	071/-60	429	84				NSR
GXRC1867 New Chum	582005	6894925	072/-58	429	102				NSR
GXRC1868 Eridanus	576550	6894341	001/-60	429	143	29 38 44 53	31 41 50 58	2 3 6 5	1.02 0.78 2.78 0.98
GXRC1869 Eridanus	576605	6894040	336/-55	430	312	249 250	254 253	5 3	6.13 9.39
GXRC1870 Theakston	577125	6894385	001/-56	446	168	1 24 42	4 33 46	3 9 4	0.83 1.02 0.58
GXRC1871 Theakston	577125	6894352	000/-60	445	174			Results	Awaited
GXRC1872 Theakston	577215	6894500	002/-60	432	162			Results	Awaited

Reported anomalous gold assay intersections are constrained using a 0.50 g/t Au lower cut for the minimum 2m downhole intervals at plus 0.50 g/t gold, with up to 2m of internal dilution. Gold determination was by Fire Assay using a 50gm charge with AAS finishes and a lower limit of detection of 0.01 ppm Au. NSR denotes no significant results. EOH denotes end of hole depth. See text for discussion on true widths. Coordinates are MGA94-Z50. Hole Abn denotes hole was abandoned due to excessive deviation away from its intended target.

Attachment 2: Significant (>1.0 g/t Au) RC Resource Definition drilling Eridanus + Hill 60, Mount Magne	et, WA
(holes listed below are from Eridanus unless labelled otherwise)	

Hole Id	Easting	Northing	Az/Dip	RL	F/Depth	From	To (m)	Interval	a/t Au
noio iu	Laoting	literating	7.2.0.0	•••	(m)	(m)	,	(m)	9,17,10
GXRC0574	581787	6894424	090/-67	435	121			Hole	Abn
Hill 60									
GXRC0575	581783	6894420	088/-68	435	245	217	222	5	7.64
Hill 60									
GXRC0576	581780	6894474	093/-69	430	233	187	197	10	2.43
Hill 60					Incl.	193	194	1	8.16
GXRC0577	581771	6894409	088/-65	435	239	202	211	9	2.58
Hill 60									
GXRC0578	581759	6894420	091/-71	436	159			Hole	Abn
Hill 60									
GXRC0579	581746	6894454	092/-65	430	157			Hole	Abn
Hill 60									
GXRC0580	581753	6894394	100/-71	436	275	253	255	2	3.79
Hill 60									
GXRC0581	581720	6894442	105/-72	430	305	273	276	3	7.57
Hill 60					Incl	273	274	1	21.0
GXRC0582	581728	6894449	101/-69	430	173			Hole	Abn
Hill 60			· · · · ·				_		
GXRC0583	576900	6894266	000/-61	431	100	42	49	7	1.55
						52	54	2	0.79
GXRC0584	576900	6894226	002/-61	430	124	55	59	4	0.60
						101	104	3	1.52
GXRC0585	576702	6894240	359/-61	429	142	29	42	13	8.18
					Incl.	33	35	2	44.7
						51	59	8	1.32
						63	78	15	2.62
					Incl.	63	64	1	9.18
					+	75	76	1	19.8

						86 96	90 102	4	1.08 1.21
						108	113	5	0.60
GXRC0586	576706	6894200	355/-60	429	165	23	60	37	2.52
					Incl.	23 20	24	1	18.5
					+	29 46	30 47	1	13.0
					-	63	69	6	0.72
						73	77	4	1.04
					Incl	80 87	105	19	2.36
					+	102	103	1	14.0
						111	116	5	0.73
						121	124	3	1.80
					Incl.	128	139	2	3.71
GXRC0587	576710	6894160	354/-60	429	155	38	40	2	1.31
						54	59	5	0.81
						70 130	72 143	2	0.66
GXRC0588	576600	6894301	003/-60	429	77	159	143	+	NSR
GXRC0589	576600	6894260	003/-60	429	95	30	34	4	0.88
						57	61	4	0.50
	576600	6904224	000/61	420	105	77	89	12	1.25
GARC0590	576600	0094221	000/-61	429	IZ5 Incl.	27 35	36	1	2.20 9.08
						44	46	2	0.53
						49	51	2	0.54
						58 102	64 106	6	1.18
GXRC0591	576600	6894180	000/-60	429	119	102 26	41	4	2.95 2.16
					Incl.	33	34	1	18.6
						44	53	9	6.49
					Inci.	50 63	51 65	1	50.7
						70	76	6	1.49
						97	104	7	2.77
	576605	6904240	107/60	420	Incl.	97	98	1	11.5
GARC0092	570025	0094310	127/-03	429	113	92	42 94	2	1.61
						105	107	2	1.00
GXRC0593	576625	6894296	001/-61	429	89	29	31	2	0.71
						39 57	50 66	11 0	1.09
						83	86	3	1.14
GXRC0594	576625	6894265	002/-60	429	107	37	53	16	0.70
GXRC0595	576625	6894235	360/-61	429	125	11	13	2	1.31
						42	47	5	0.81
						53 73	62 75	9	0.55
						121	125	4	0.56
GXRC0596	576625	6894205	001/-61	429	137	23	25	2	0.78
						28	36	8	0.73
						59 51	⁴⁴ 67	16	3.30
					Incl.	57	59	2	21.6
					la al	80	90	10	2.63
					inci. +	80 85	81 86	1	9.70
						94	97	3	5.92
					Incl.	95	96	1	8.50
					Incl	120	130	10	6.49
GXRC0597	576625	6894173	002/-61	429	146	26	29	3	5.33
					Incl.	26	27	1	12.0

					Incl.	34 40 43 47 73 130	37 44 44 54 79 132	3 4 1 7 6 2	1.34 3.56 11.3 1.20 1.40 3.02
GXRC0598	576625	6894145	001/-61	429	156 Incl. Incl. Incl.	100 104 109 109 121 138 138	105 105 115 110 125 142 139	5 1 6 1 4 4 1	4.04 8.23 3.38 12.1 3.63 7.52 29.2
GXRC0599	576800	6894320	000/-61	430	84	74	76	2	5.34
GXRC0600	576800	6894287	001/-60	430	102 Incl.	46 61 74 81 97	49 66 83 82 99	3 5 9 1 2	1.24 1.36 2.95 14.6 1.50
GXRC0601	576800	6894271	001/-61	430	130 Incl. Incl. + +	22 22 31 31 36 41 69	24 23 49 33 38 43 71	2 1 18 2 2 2 2 2	22.97 40.5 14.91 10.3 62.3 43.3 1.52
GXRC0602	576800	6894230	000/-60	430	161 Incl.	49 75 101 149 149	51 83 109 153 150	2 8 8 4 1	1.72 2.42 1.85 2.99 10.7
GXRC0603 Diamond Tail	576800	6894191	002/-60	430	111.97	90	111.97	Assays	Awaited
GXRC0604	576794	6894192	002/-60	430	60	54	57	3	1.30
GXRC0605	576775	6894315	002/-60	430	120	30 35	32 37	2	9.99 1.39
GXRC0606	576775	6894285	002/-60	430	120 Incl.	38 92 95 115	47 103 97 119	9 11 2 4	1.42 5.22 19.4 0.83
GXRC0607	576775	6894255	002/-60	430	132	32 37 49 60 117	34 42 53 67 119	2 5 4 7 2	1.47 1.38 4.07 3.84 1.95
GXRC0608	576775	6894226	002/-61	430	144 Incl.	48 58 83 103 113 113 121 137	50 60 89 105 117 114 123 142	2 2 6 2 4 1 2 5	1.09 1.16 1.08 1.29 3.15 10.9 1.65 2 22
GXRC0609	576775	6894196	000/-60	430	154 Incl.	53 61 115 126 133 133	57 65 119 129 135 134	4 4 4 3 2 1	1.28 1.76 2.78 1.03 16.27 27.2
GXRC0610	576775	6894166	001/-60	430	172	68	72	4	1.61
GXRC0611	576775	6894136	002/-60	429	96	79	82	3	2.69
GXRC0612	576575	6894290	001/-60	429	90	44 60	46 62	2 2	1.77 6.24

					Incl.	60	61	1	10.0
GXRC0613	576575	6894261	001/-59	429	132	124	127	3	2.55
GXRC0614	576575	6894230	000/-60	429	138				NSR
GXRC0615	576578	6894196	355/-60	429	114	66	70	4	1.28
GXRC0616	576625	6894326	002/-60	429	84	54	58	4	0.86
GXRC0617	576825	6894290	001/-60	430	110	54	67	13	7.17
					Incl.	60 70	62 82	2	18.5
						93	103	10	2.64
GXRC0618	576825	6894261	001/-59	430	142	49	63	14	4.74
					Incl.	53 59	54 60	1	9.40 25.8
						66	68	2	1.15
						101	105	4	1.55
					Incl.	126	129	3	5.56 8.38
GXRC0619	576825	6894230	000/-60	430	150	35	49	14	1.50
						53	57	4	1.64
						74	94	4 20	21.98
					Incl.	76	90	14	30.68
					Incl	98	102	4	7.00
					Inci.	105	112	7	1.48
						123	128	5	2.25
GXRC0620	576825	6894200	000/-60	430	156	11	15	4	0.95
						98	100	2	2.03
						104	106	2	2.01
GXRC0621	576725	6894310	000/-59	430	132	115 39	117 42	2 3	2.02 2.11
GXRC0622	576725	6894280	003/-60	430	148	38	41	3	1 72
0/11/00022	010120	000 1200	000,00	100		58	60	2	1.47
					Ind	74	76	2	5.92
					INCI.	74 97	100	3	9.40
						104	107	3	2.87
					Incl	113	121	8	4.56
					IIICI.	131	135	4	0.86
GXRC0623	576725	6894254	359/-61	430	160	74	76	2	2.93
						80 107	83	3	2.52
						116	121	5	1.13
GXRC0624	576725	6894221	001/-60	430	180	23	25	2	2.58
						28 52	30 57	2	1.54
						67	69	2	1.19
						90	94	4	1.51
					Incl.	107	109	4	3.27 9.24
						117	120	3	2.49
					Incl	128	141	13	2.55
						178	180	2	1.18
GXRC0625	576725	6894190	001/-60	429	192	60	66	6	2.04
					Incl	101	108	7	2.03
					inci.	172	175	3	0.77
						178	180	2	1.12
GXRC0626	576725	6894160	359/-60	429	198	38 45	41 53	3 8	0.94 4 -69
L	1	L		1	I				

					Incl.	47	48	1	19.3
GXRC0627	576725	6894130	000/-60	429	126	140	158	12	NSR
CXPC0629	576667	6804201	012/60	120	156	25	27	2	2.07
GARC0020	570007	0094301	012/-60	430	100	35 47	53	2	2.07
						118	123	5	4.01
					Incl.	121	122	1	11.8
						140	142	2	4.41
GXRC0629	576548	6894201	002/-60	419	100	34	42	8	0.93
GXRC0630	576561	6894171	346/-61	419	114	17	22	5	1.44
	570070	0004074	004/00	400	400	83	93	10	1.53
GARC0631	576673	6894271	004/-60	430	138	114	119	5	1.56
GXRC0632	576675	6894240	003/-59	429	156	32	46	14	2.51
					Incl.	45 55	46	1	14.8
					Incl	55	02 59	3	0.79
GXRC0633	576675	6894211	003/-60	429	162	28	38	10	1.58
				-	-	46	51	5	3.41
					Incl.	47	48	1	9.31
						60	63	3	0.84
						95	99	4	2.55
CYPC0634	576675	6804150	001/60	420	180	153	158	5	3.57
GARC0034	570075	0094150	001/-00	429	100	97	103	6	1.75
						117	120	3	2.17
GXRC0635	576550	6894380	002/-60	429	120				NSR
GXRC0636	576785	6894290	089/-60	430	132	53	57	4	1.69
						101	103	2	2.97
						106	130	2	1.03
GXRC0637	576753	6894290	091/-60	430	180	38	44	6	1.74
						51	57	6	6.77
					Incl.	54	55	1	28.7
						123	125	2	2.80
					Incl	172	176	4	3.56
GXRC0638	576575	689/320	002/-60	120	120	172	173	3	2.53
0/1/00000	570575	0034320	002/-00	723	120	76	78	2	2.53
						111	113	2	2.15
GXRC0639	576575	6894140	002/-60	420	114	50	52	2	1.49
GXRC0640	576560	6894127	348/-60	420	168	38	45	7	3.25
					Incl.	44	45	1	11.5
					1	92	94	2	9.63
GYRC0641	576600	680/100	002/50	122		92	93	1	17.3
GARC0041	570000	0094100	002/-59	423	114	90	100	4	1.72
GXRC0642	576750	6894332	002/-60	430	114	82 93	86 99	4	2.98 2.95
GXRC0650	581770	6894419	088/-72	435	274	237	246	9	2.92
Hill 60									

Reported significant gold assay intersections (using a 0.5 g/t Au lower cut) are reported using +2m downhole intervals at plus 1.0 g/t gold, with up to 2m of internal dilution. Gold determination was by Fire Assay using a 50gm charge with AAS finishes and a lower limit of detection of 0.01 ppm Au. NSR denotes no significant results. See text for discussion on true widths. Coordinates are MGA94-Z50. Hole Abn denotes hole was abandoned due to excessive deviation away from its intended target.

Attachment 3: Anomalous (>0.50 g/t Au) Geotechnical diamond drilling intersections - Mt Magnet WA

Hole Id	Easting	Northing	Az/Dip	RL	F/Depth (m)	From (m)	To (m)	Interval (m)	g/t Au
GXDD0064 Hill 60	581783	6894465	279/-55	430	279.40			Assays	Awaited
GXDD0065 Hill 60	581783	6894464	091/-52	430	275.00			Assays	Awaited
GXDD0066 Eridanus	576675	6894180	001/-60	430	224.62			Assays	Awaited

Reported anomalous gold assay intersections are constrained using a 0.50 g/t Au lower cut for the 1m downhole intervals at plus 0.50 g/t gold, with up to 2m of internal dilution. Gold determination was by Fire Assay using a 50gm charge with AAS finishes and a lower limit of detection of 0.01 ppm Au. NSR denotes no significant results. EOH denotes end of hole depth. See text for discussion on true widths. Coordinates are MGA94-Z50. Hole Abn denotes hole was abandoned due to excessive deviation away from its intended target.

JORC Table 1 Report for Mt Magnet, Diamond and RC Drilling

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 At all projects potential gold mineralised RC intervals are systematically sampled using industry standard 1m intervals (1.52m equals 5 foot intervals in USA), collected from reverse circulation (RC) drill holes and/or 4m composites from reconnaissance Aircore traverses. Surface and underground Diamond holes may be sampled along sub 1m geological contacts, otherwise 1m intervals are the default. Drill hole locations were designed to allow for spatial spread across the interpreted mineralised zone. All RC samples were collected and riffle split to 3-4kg samples on 1m metre intervals. Aircore samples are speared from piles on the ground and are composited into 4m intervals before despatching to the laboratory. Single metre bottom of hole Aircore samples are collected for trace element determinations. Diamond core is half cut along downhole orientation lines. Half core is sent to the laboratory for analysis and the other half is retained for future reference. Standard fire assaying was employed using a 50gm charge with an AAS finish for all diamond, RC and Aircore chip samples. Trace element determination was undertaken using a multi (4) acid digest and ICP- AES finish.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling was completed using best practice NQ diamond core, 5 ¾" face sampling RC drilling hammers for all RC drill holes and 3" Aircore bits.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 All diamond core is jigsawed to ensure any core loss, if present is fully accounted for. Bulk RC and Aircore drill holes samples were visually inspected by the supervising geologist to ensure adequate clean sample recoveries were achieved. Note Aircore drilling while clean is

Criteria	JORC Code explanation	Commentary
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 not used in any resource estimation work. Any wet, contaminated or poor sample returns are flagged and recorded in the database to ensure no sampling bias is introduced. Zones of poor sample return both in RC and Aircore are recorded in the database and cross checked once assay results are received from the laboratory to ensure no misrepresentation of sampling intervals has occurred. Of note, excellent RC drill recovery is reported from all RC holes. Reasonable recovery is noted for all Aircore samples. Zero sample recovery is achieved while navi drilling. The navi lengths are kept to a minimum and avoided when close to potentially mineralised units.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples are geologically logged on site by professional geologists. Details on the host lithologies, deformation, dominant minerals including sulphide species and alteration minerals plus veining are recorded relationally (separately) so the logging is interactive and not biased to lithology. Drill hole logging is qualitative on visual recordings of rock forming minerals and quantitative on estimates of mineral abundance. The entire length of each drill hole is geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Duplicate samples are collected every 25th sample from the RC and Aircore chips as well as quarter core from the diamond holes. Dry RC 1m samples are riffle split to 3-4kg as drilled and dispatched to the laboratory. In Nevada the entire 5 foot sample is wet riffle split to avoid dust inhalation and the bulk sample residue is diverted to a sump as waste. Any wet samples are recorded in the database as such and allowed to dry before splitting and dispatching to the laboratory. All core, RC and Aircore chips are pulverized prior to splitting in the laboratory to ensure homogenous samples with 85% passing 75um. 200gm is extracted by spatula that is used for the 50gm charge on standard fire assays. All samples submitted to the laboratory are sorted and reconciled against the submission documents. In addition to duplicates a high grade or low grade standard is included every 25th sample, a controlled blank is inserted every 100th sample. The laboratory uses barren

Criteria	JORC Code explanation	Commentary
		 flushes to clean their pulveriser and their own internal standards and duplicates to ensure industry best practice quality control is maintained. The sample size is considered appropriate for the type, style, thickness and consistency of mineralization.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The fire assay method is designed to measure the total gold in the core, RC and Aircore samples. The technique involves standard fire assays using a 50gm sample charge with a lead flux (decomposed in the furnace). The prill is totally digested by HCl and HNO₃ acids before measurement of the gold determination by AAS. Aqua regia digest is considered adequate for surface soil sampling. No field analyses of gold grades are completed. Quantitative analysis of the gold content and trace elements is undertaken in a controlled laboratory environment. Industry best practice is employed with the inclusion of duplicates and standards as discussed above, and used by Ramelius as well as the laboratory. All Ramelius standards and blanks are interrogated to ensure they lie within acceptable tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grades exists.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Alternative Ramelius personnel have inspected the diamond core, RC and Aircore chips in the field to verify the correlation of mineralised zones between assay results and lithology, alteration and mineralization. All holes are digitally logged in the field and all primary data is forwarded to Ramelius' Database Administrator (DBA) in Perth where it is imported into Datashed, a commercially available and industry accepted database software package. Assay data is electronically merged when received from the laboratory. The responsible project geologist reviews the data in the database to ensure that it is correct and has merged properly and that all the drill data collected in the field has been captured and entered into the database correctly. The responsible geologist makes the DBA aware of any errors and/or omissions to the database and the corrections (if required) are corrected

Criteria	JORC Code explanation	Commentary
Location of		 in the database immediately. No adjustments or calibrations are made to any of the assay data recorded in the database. No new mineral resource estimate is included in this report.
data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are picked up using accurate DGPS survey control. All down hole surveys are collected using downhole Eastman single shot surveying techniques provided by the drilling contractors. All Mt Magnet and Edna May holes are picked up in MGA94 – Zone 50 grid coordinates. DGPS RL measurements captured the collar surveys of the drill holes prior to the resource estimation work.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Most RC drilling at Magnet was infilling the Eridanus prospect ahead of resource estimation work, nominally on 12x25m sections plus looking for extensions to the known mineralised systems. Good continuity has been achieved from the infill RC drilling at Eridanus (Mount Magnet) and Edna May. Given the limited understanding of the target horizon infill drilling is necessary to help define the continuity of mineralisation. No sampling compositing has been applied within key mineralised intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The core drilling and RC drilling is completed orthogonal to the interpreted strike of the target horizon(s). Aircore drilling is completed on systematic MGA E-W or N-S traverses with holes nominally 50m apart.
Sample security	• The measures taken to ensure sample security.	 Sample security is integral to Ramelius' sampling procedures. All bagged samples are delivered directly from the field to the assay laboratory in Perth or Reno (Nevada), whereupon the laboratory checks the physically received samples against Ramelius' sample submission/dispatch notes.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Sampling techniques and procedures are reviewed prior to the commencement of new work programmes to ensure adequate

Criteria	JORC Code explanation	Commentary
		procedures are in place to maximize the sample collection and sample quality on new projects. No external audits have been completed to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are located on granted Mining Leases (ML) at Mount Magnet or Edna May in Western Australia (owned 100% by Ramelius Resources Limited) The Mt Magnet tenements are located on pastoral/grazing leases. Edna May is located in Crown Land of Westonia Town Common. Heritage surveys are completed prior to any ground disturbing activities in accordance with Ramelius' responsibilities under the Aboriginal Heritage Act and the BLM requirements. At this time all the tenements are in good standing. There are no known impediments to obtaining a licences to operate in either area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Exploration and mining by other parties has been reviewed and is used as a guide to Ramelius' exploration activities. Previous parties have completed shallow RAB, Aircore drilling and RC drilling and shallow open pit and underground mining at Hill 60 and Edna May, plus geophysical data collection and interpretation. This report concerns only exploration results generated by Ramelius during the June Quarter 2018 that were not previously reported to the ASX.
Geology	• Deposit type, geological setting and style of mineralisation.	 The targeted mineralisation at Mount Magnet and Edna May is typical of orogenic structurally controlled Archaean gold lode systems. In all instances the mineralisation is controlled by anastomosing shear zones/fault zones passing through competent rock units, brittle fracture and stockwork mineralization is common on the competent limestones, BIF or porphyry rock. The historically mined lodes at Mount Magnet are known to extend to at least 1km below surface and Edna May to at least 500mbs. Mineralisation at Eridanus is porphyry hosted while Hill 60 is BIF hosted.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a	 All the drill holes reported in this report have the following parameters applied. All drill holes completed, including holes with no significant

Criteria	JORC Code explanation	Commentary
	 tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 results (as defined in the Attachments) are reported in this announcement. Easting and northing are given in MGA94 coordinates as defined in the Attachments for Mount Magnet and Edna May. RL is AHD Dip is the inclination of the hole from the horizontal. Azimuth is reported in magnetic degrees as the direction the hole is drilled. MGA94 and magnetic degrees vary by <1⁰ in the project area. All reported azimuths are corrected for magnetic declinations. Down hole length is the distance measured along the drill hole trace. Intersection length is the thickness of an anomalous gold intersection measured along the drill hole trace. Hole length is the distance from the surface to the end of the hole measured along the drill hole trace. No results currently available from the exploration drilling are excluded from this report. Gold grade intersections >0.4 g/t Au within single metre RC samples (with up to 4m of internal dilution) are considered significant in the broader mineralised host rocks. Diamond core samples are generally cut along geological contacts or up to 1m maximum. Gold grades greater than 0.5 g/t Au are highlighted where good continuity of higher grade mineralization is observed.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The first gold assay result received from each sample reported by the laboratory is tabled in the list of significant assays. Subsequent repeat analyses when performed by the laboratory are checked against the original to ensure repeatability of the assay results. Weighted average techniques are applied to determine the grade of the anomalous interval when geological intervals less than 1m have been sampled. Exploration drilling results are generally reported using a 0.5 g/t Au lower cut-off for RC and diamond or 0.1 g/t Au for Aircore drilling (as described above and reported in the Attachments) and may include up to 4m of internal dilution. Significant resource development drill hole assays are reported greater than 0.5 or 8.0 g/t Au and are also reported separately. For example, the broader

Criteria	JORC Code explanation	
		 plus 1.0 g/t Au intersection of 6.5m @ 30.5 g/t Au contains a higher grade zone running plus 8 g/t Au and is included as 4m @ 48.5 g/t Au. Where extremely high gold intersections are encountered as in this example, the highest grade sample interval (eg 1.0m @ 150 g/t Au) is also reported. All assay results are reported to 3 significant figures in line with the analytical precision of the laboratory techniques employed. No metal equivalent reporting is used or applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The intersection length is measured down the length of the hole and is not usually the true width. When sufficient knowledge on the thickness of the intersection is known an estimate of the true thickness is provided in the Attachments. The known geometry of the mineralisation with respect to the drill holes reported in this report is now well constrained.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Detailed drill hole plans and sectional views of Eridanus have been provided previously. Given the interpreted shallow dips of the multiple mineralisation lodes at Eridanus the cross sectional view is considered the best 2-D representation of the known spatial extent of the mineralization intersected to date.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill holes completed to date are reported in this report and all material intersections as defined) are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data that has been collected is considered meaningful and material to this report.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or	• Future exploration includes step out diamond drilling on the Shannon targets plus infill RC and further step out drilling below and along strike

Criteria	JORC Code explanation	Commentary
	 large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	of the reported intersections at Eridanus to define the full extent of the mineralisation discovered to date.